References

Maximum entropy method

[1] J. E. Gubernatis, M. Jarrell, R. N. Silver, D. S. Sivia, Quantum monte carlo simulations and maximum entropy: Dynamics from imaginary-time data, Phys. Rev. B 44, 6011 (1991).

[2] M. Jarrell, J. Gubernatis, Bayesian inference and the analytic continuation of imaginary-time quantum monte carlo data, Phys. Rep. 269, 133 (1996).


Stochastic analytic continuation

[1] A. W. Sandvik, Stochastic method for analytic continuation of quantum monte carlo data, Phys. Rev. B 57, 10287 (1998)

[2] K. S. D. Beach, Identifying the maximum entropy method as a special limit of stochastic analytic continuation, arXiv:0403055 (2004).

[3] A. W. Sandvik, Constrained sampling method for analytic continuation, Phys. Rev. E 94, 063308 (2016).

[4] H. Shao, Y. Q. Qin, S. Capponi, S. Chesi, Z. Y. Meng, A. W. Sandvik, Nearly deconfined spinon excitations in the square-lattice spin-1/2 heisenberg antiferromagnet, Phys. Rev. X 7, 041072 (2017).

[5] H. Shao, A. W. Sandvik, Progress on stochastic analytic continuation of quantum monte carlo data, Phys. Rep. 1003, 1 (2023).


Stochastic optimization method

[1] A. S. Mishchenko, N. V. Prokof’ev, A. Sakamoto, B. V. Svistunov, Diagrammatic quantum monte carlo study of the frohlich polaron, Phys. Rev. B 62, 6317 (2000).

[2] I. Krivenko, M. Harland, Triqs/som: Implementation of the stochastic optimization method for analytic continuation, Comput. Phys. Commun. 239, 166 (2019).


Stochastic pole expansion

[1] Li Huang, Shuang Liang, Stochastic pole expansion method for analytic continuation of the Green's function, Phys. Rev. B 108, 235143 (2023).

[2] Li Huang, Shuang Liang, Reconstructing lattice QCD spectral functions with stochastic pole expansion and Nevanlinna analytic continuation, Phys. Rev. D 109, 054508 (2024).


Barycentric rational function approximation

[1] Li Huang, Changming Yue, Barycentric rational function approximation made simple: A fast analytic continuation method for Matsubara Green's functions, in preparation (2024).