Spin-orbit coupling
Spin-orbit interaction Hamiltonian
The spin-orbit coupling (SOC) is implemented at atomic level,
\[\begin{equation} \hat{H}_{\text{SOC}}= \lambda\sum_{i}\hat{l}_{i} \cdot \hat{s}_{i}, \end{equation}\]
where $\hat{l}$ is orbital angular momentum, and $\hat{s}$ is spin angular momentum. In second quantization form,
\[\begin{equation} \hat{H}_{\text{SOC}}= \lambda\sum_{\alpha\sigma,\beta\sigma^{\prime}} \left\langle \alpha\sigma\left| \hat{l} \cdot \hat{s} \right|\beta\sigma^{\prime} \right\rangle \hat{f}_{\alpha\sigma}^{\dagger}\hat{f}_{\beta\sigma^{\prime}}, \end{equation}\]
where $\alpha$ is orbital index and $\sigma$ is spin index. We note that
\[\begin{equation} \hat{l} \cdot \hat{s} = \frac{1}{2} \hat{l} \cdot \hat{\sigma}. \end{equation}\]
where $\hat{\sigma}$ is the Pauli operator:
\[\begin{equation} \hat{\sigma} = \hat{\sigma}_x \hat{x} + \hat{\sigma}_y \hat{y} + {\sigma}_z \hat{z}. \end{equation}\]
\[\begin{equation} \hat{\sigma}_x = \left[ \begin{array}{cc} 0 & 1 \\ 1 & 0 \\ \end{array} \right],~ \hat{\sigma}_y = \left[ \begin{array}{cc} 0 & -i \\ i & 0 \\ \end{array} \right],~ \hat{\sigma}_z = \left[ \begin{array}{cc} 1 & 0 \\ 0 & -1 \\ \end{array} \right]. \end{equation}\]
Now the question is how to write down the matrix elements for $\hat{l} \cdot \hat{\sigma}$.
\[\begin{equation} \hat{l} \cdot \hat{\sigma} = \hat{l}_{x}\hat{\sigma}_{x}+ \hat{l}_{y}\hat{\sigma}_{y}+ \hat{l}_{z}\hat{\sigma}_{z} = \left[\begin{array}{cc} \hat{l}_{z} & \hat{l}_{-}\\ \hat{l}_{+} & -\hat{l}_{z} \end{array}\right], \end{equation}\]
where $\hat{l}_{\pm}=\hat{l}_{x}\pm\hat{l}_{y}$. It is easy to prove that the above equation can be rewritten as
\[\begin{equation} \hat{l} \cdot \hat{\sigma} = \hat{l}_{+}\hat{\sigma}_{-}+ \hat{l}_{-}\hat{\sigma}_{+}+ \hat{l}_{z}\hat{\sigma}_{z}, \end{equation}\]
where
\[\begin{equation} \hat{\sigma}_+ = \left[ \begin{array}{cc} 0 & 1 \\ 0 & 0 \\ \end{array} \right],~ \hat{\sigma}_- = \left[ \begin{array}{cc} 0 & 0 \\ 1 & 0 \\ \end{array} \right]. \end{equation}\]
Spin-orbit interaction in the complex orbital basis
We just write down $\hat{l}\cdot\hat{\sigma}$ in the complex spherical harmonics basis. The following relations are used to derive the matrix elements of the spin-orbit interaction:
\[\begin{equation} \hat{l}_{\pm}Y_{l}^{m}=\sqrt{(l\mp m)(l\pm m+1)}Y_{l}^{m\pm1}. \end{equation}\]
\[\begin{equation} \hat{\sigma}_+ |\uparrow\rangle = 0,~ \hat{\sigma}_+ |\downarrow\rangle = |\uparrow\rangle. \end{equation}\]
\[\begin{equation} \hat{\sigma}_- |\uparrow\rangle = |\downarrow\rangle,~ \hat{\sigma}_- |\downarrow\rangle = 0. \end{equation}\]
\[\begin{equation} \hat{\sigma}_z |\uparrow\rangle = 1,~ \hat{\sigma}_z |\downarrow\rangle = -1. \end{equation}\]
For $p$ system,
\[\begin{equation} \hat{l}\cdot\hat{\sigma}= \left[ \begin{array}{ccc|ccc} -1 & 0 & 0 & 0 & \sqrt{2} & 0\\ 0 & 0 & 0 & 0 & 0 & \sqrt{2}\\ 0 & 0 & 1 & 0 & 0 & 0\\ \hline 0 & 0 & 0 & 1 & 0 & 0\\ \sqrt{2} & 0 & 0 & 0 & 0 & 0\\ 0 & \sqrt{2} & 0 & 0 & 0 & -1\\ \end{array} \right] \end{equation}\]
For $d$ system,
\[\begin{equation} \hat{l}\cdot\hat{\sigma}= \left[ \begin{array}{ccccc|ccccc} -2 & 0 & 0 & 0 & 0 & 0 & \sqrt{4} & 0 & 0 & 0\\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & \sqrt{6} & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \sqrt{6} & 0\\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & \sqrt{4}\\ 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0\\ \hline 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0\\ \sqrt{4} & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\\ 0 & \sqrt{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & \sqrt{6} & 0 & 0 & 0 & 0 & 0 & -1 & 0\\ 0 & 0 & 0 & \sqrt{4} & 0 & 0 & 0 & 0 & 0 & -2\\ \end{array} \right] \end{equation}\]
For $f$ system,
\[\begin{equation} \hat{l}\cdot\hat{\sigma}= \left[ \begin{array}{ccccccc|ccccccc} -3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \sqrt{6} & 0 & 0 & 0 & 0 & 0\\ 0 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \sqrt{10} & 0 & 0 & 0 & 0\\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \sqrt{12} & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \sqrt{12} & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \sqrt{10} & 0\\ 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \sqrt{6}\\ 0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0\\ \sqrt{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0\\ 0 & \sqrt{10} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0\\ 0 & 0 & \sqrt{12} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & \sqrt{12} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0\\ 0 & 0 & 0 & 0 & \sqrt{10} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 0\\ 0 & 0 & 0 & 0 & 0 & \sqrt{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -3\\ \end{array} \right] \end{equation}\]
The following Julia's script can be used to generate the matrix elements for the spin-orbit interaction.
# To calculate the matrix representation of spin-orbit coupling in the
# complex orbital basis.
function calc_matrix(l::Int64)
println("Construct complex orbital basis for 𝑙 = $l")
COB = [] # To save the complex orbital basis
# m = -l, -l+1, ..., l-1, l
mlist = collect(-l:1:l)
for s in ("up", "down")
for m in mlist
push!(COB, [m, s])
end
end
#
for i in eachindex(COB)
m = COB[i][1]
s = COB[i][2] == "up" ? "↑" : "↓"
println("$i -> | $l, $m, $s ⟩")
end
println("Calculate matrix elements of spin-orbit coupling")
for i in eachindex(COB)
lᵢ = l
mᵢ = COB[i][1]
sᵢ = COB[i][2]
for j in eachindex(COB)
lⱼ = l
mⱼ = COB[j][1]
sⱼ = COB[j][2]
# For l₊σ₋ term
T₁ = (lⱼ - mⱼ) * (lⱼ + mⱼ + 1)
m1ⱼ = mⱼ + 1
#
if sⱼ == "up"
s1ⱼ = "down"
else
s1ⱼ = "null"
end
#
if m1ⱼ == mᵢ && sᵢ == s1ⱼ
println("SOC($i, $j) = sqrt(", T₁, ")")
end
# For l₋σ₊ term
T₂ = (lⱼ + mⱼ)*(lⱼ - mⱼ + 1)
m2ⱼ = mⱼ - 1
#
if sⱼ == "down"
s2ⱼ = "up"
else
s2ⱼ = "null"
end
#
if m2ⱼ == mᵢ && sᵢ == s2ⱼ
println("SOC($i, $j) = sqrt(", T₂, ")")
end
# For lzσz term
T₃ = mⱼ * (sⱼ == "up" ? 1 : -1)
if mⱼ == mᵢ && sᵢ == sⱼ
println("SOC($i, $j) = ", T₃)
end
end
end
end
Spin-orbit interaction in the $\hat{j}^{2}-\hat{j}_{z}-\hat{l}^2-\hat{s}^2$ diagonal basis
Since
\[\begin{equation} \hat{j} = \hat{l} + \hat{s}, \end{equation}\]
\[\hat{j}^2 = \hat{l}^2 + \hat{s}^2 + 2\hat{l} \cdot \hat{s},\]
\[\hat{l} \cdot \hat{\sigma} = 2 \hat{l} \cdot \hat{s} = \hat{j}^2 - \hat{l}^2 - \hat{s}^2,\]
thus, in the $\hat{j}^{2}-\hat{j}_{z}-\hat{l}^2-\hat{s}^2$ diagonal basis, the matrix of $\hat{l} \cdot \hat{\sigma}$ is diagonal. The diagonal element reads $j(j+1) - l(l+1) - s(s+1)$. Note that in this basis, $j = l \pm \frac{1}{2}$ and $s = \frac{1}{2}$.
For $p$ system,
\[\begin{equation} \hat{l}\cdot\hat{\sigma}= \left[ \begin{array}{ccc|ccc} -2 & 0 & 0 & 0 & 0 & 0\\ 0 & -2 & 0 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0\\ \hline 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 0 & 1\\ \end{array} \right] \end{equation}\]
For $d$ system,
\[\begin{equation} \hat{l}\cdot\hat{\sigma}= \left[ \begin{array}{ccccc|ccccc} -3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & -3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & -3 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & -3 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0\\ \hline 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2\\ \end{array} \right] \end{equation}\]
For $f$ system,
\[\begin{equation} \hat{l}\cdot\hat{\sigma}= \left[ \begin{array}{ccccccc|ccccccc} -4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & -4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & -4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & -4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & -4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & -4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3\\ \end{array} \right] \end{equation}\]
Next, it is easy to transform the above matrices from the $\hat{j}^{2}-\hat{j}_{z}-\hat{l}^2-\hat{s}^2$ diagonal basis to complex orbital basis. See Single particle basis for the transformation matrix.